# AFD37 - Introduction to accurate measurement and characterization techniques for active filters.

video lectures from iit professors.... not available in NPTEL.....

video Lectures on "Active Filter Design" by Dr.Shanthi Pavan , IIT Madras

for more videos .... www.satishkashyap.com

for free ebooks.....www.ebook29.blogspot.com

Lecture 1 - Course overview and introduction.

Lecture 2 - The Butterworth approximation

Lecture 3 - The Chebyshev approximation

Lecture 4 - The Chebyshev approximation (contd)

Lecture 5 - The Chebyshev approximation (contd), the Inverse Chebyshev approximation

Lecture 6 - The Inverse Chebyshev approximation (contd).

Lecture 7 - Synthesis of doubly terminated all-pole LC ladders filters

Lecture 8 - Synthesis of doubly terminated LC ladders (contd).

Lecture 9 - Synthesis of doubly terminated LC ladders with finite zeros of transmission.

Lecture 10 - Network sensitivity - low sensitivity of doubly terminated ladders

Lecture 11 - Introduction to frequency transformations.

Lecture 12 - Frequency (reactance) transformations (contd) - properties of the driving

impedance of lossless LC networks- Tellegen's theorem and positive real functions.

Lecture 13 - Driving point impedance of LC networks (contd), Low Pass-to-Low Pass, Low

Pass-to-Band Pass, Low Pass-to-High Pass and Low Pass-to-Band Stop transformations

Lecture 14 - The Richard's Transformation, RC-CR transformation

Lecture 15 - Emulation of an inductor with a capacitor and controlled sources, the

gyrator, a second order transconductor capacitor filter.

Lecture 16 - Cascade of biquads realization of high order low pass filters, equivalence

of the parallel RLC and series RLC circuits with their Gm-C counterparts.

Lecture 17 - The idea of Dynamic Range in active filters - impedance scaling and its

effect on dynamic range

Lecture 18 - Introduction to noise in electrical networks.

Lecture 19 - Introduction to noise in electrical networks (contd), the idea of node

scaling.

Lecture 20 - Dynamic range scaling in active filters.

Lecture 21 - Biquad Ordering.

Lecture 22 - Active Ladder Emulation / Leapfrog Filters, Effect of Transconductor

nonidelaities (parasitic capacitance/output resistance).

Lecture 23 - Effect of Transconductor Nonidealities (contd) - parasitic poles.

Lecture 24 - Viewing the Gm-C biquad as a Double Integrator Loop, Revisiting the Effect

of Finite Gain of the Transconductors.

Lecture 25 - Single-ended Versus Differential Filters, Introducing the Differential-pair

Based Fully Differential Transconductor, the Need for Common-mode Feedback

Lecture 26 - Common-mode Feedback (continued).

Lecture 27 - Common-mode Feedback (continued), examples of Common-mode Detectors.

Lecture 28 - Stability of the Common-mode Feedback Loop

Lecture 29 - Common-mode Positive Feedback in Gyrators.

Lecture 30 - Common-mode Positive Feedback in Gyrators (contd), Noise in the

Differential Pair.

Lecture 31 - Noise in the Differential Pair (contd), Linearity of the Differential Pair,

Cascoding to Improve Output Impedance

Lecture 32 - Noise in Cascodes, Layout Considerations and Multi-finger Transistors.

Lecture 33 - Linearizing the Differential Pair, Resistive Degeneration.

Lecture 34 - Noise in Degenerated Transconductors, The Folded Cascode and Noise Analysis

Lecture 35 - Stabilizing filter bandwidth over process and temperature - the resistor

servo loop, master-slave loops.

Lecture 36 - Turning the filter into a VCO to estimate center frequency, example of a

practical precision fixed-gm bias circuit.

Lecture 37 - Introduction to accurate measurement and characterization techniques for

active filters.

Lecture 38 - Introduction to Active-RC filters.

Lecture 39 - Active-RC filters (contd), the use of an OTA instead of an opamp, swing and

noise considerations, single stage OTAs

Lecture 40 - Multistage OTAs for use in CMOS Active-RC filters.

Lecture 41 - The Miller compensated opamp in active-RC filters, noise considerations,

noise in active-RC filters .

Lecture 42 - Distortion and Intermodulation in filters, miscellaneous discussion on

fixed gm-bias circuits

sortSort By